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Abstract

A new algorithm to generate smooth two-dimensional boundary conforming coordinates, with grid lines control, on
multiply connected regions including boundary singularities, is devised. The technique fits into the category of elliptic grid
generators, since it is based on the numerical solution of Poisson equations. The physical domain D is transformed into a
topologically equivalent connected rectangular domain D0 by defining a branch cut inside D. Control of the grid line spac-
ing over the multiply connected regions is established by appropriately distributing nodal points on the branch cut, and on
other boundary curves. Simple and computationally convenient expressions for the control functions, present in the Pois-
son system, are obtained from this initial distribution of points. Thus, a natural link between clustering properties and the
control functions is created. Fixing the nodal points on the branch cut causes the convergence of the numerical method
about the singular boundary points. An iterative smoothing process relocating the branch cut is described. As a result,
smooth grids are obtained. Grid quality analysis shows that coordinate line orthogonality in the new meshes is superior
than in similar grids obtained from a well-known commercial software. The algorithm is successfully tested over a variety
of multiply connected domains. The computational advantage of this novel grids is revealed by using them to numerically
model the vibrations of complexly shaped annular membranes.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The smoothness of a mesh and its appropriate grid point spacing are of primary importance in the numer-
ical solution of partial differential equations (PDE) modelling physical phenomena. The focus of this work is
to develop an algorithm capable of producing smooth curvilinear coordinates with control of the grid line
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spacing on geometries with one or several holes in the presence of non-smooth boundaries. An elliptic grid
generation system is adopted. More precisely, a transformation T from a computational domain D0 with rect-
angular coordinates (n,g), to a physical domain D with boundary conforming curvilinear coordinates
(x(n,g),y(n,g)) is defined (see Fig. 1). Following a standard approach [19], the new curvilinear coordinates
are obtained by numerically solving a Dirichlet boundary value problem governed by the familiar quasi-linear
elliptic system of partial differential equations given by
axnn � 2bxng þ cxgg ¼ �a/ðn; gÞxn � cwðn; gÞxg; ð1Þ
aynn � 2byng þ cygg ¼ �a/ðn; gÞyn � cwðn; gÞyg; ð2Þ
with control functions / and w to be determined. Here, a, b and c are scale metric factors of the transforma-
tion T, defined by a ¼ x2

g þ y2
g; b ¼ xnxg þ ynyg; c ¼ x2

n þ y2
n: It has been said [15] that the secret of each ‘‘good’’

elliptic grid generation algorithm is the method of computing control functions / and w which satisfies all the
clustering requirements. Unfortunately, there are not universal prescriptions to specify these functions,
although many approaches have been proposed [11]. In our work, special conditions will be imposed on
the definitions of / and w to factor in all the clustering requirements. These conditions will be discussed in
detail in Sections 2 and 3.

Numerous elliptic grid generation algorithms have been proposed over the last 20 years. An excellent source
of the historical development and current procedures is contained in a handbook of grid generation by
Thompson et al. [19]. In chapter 1 of this reference, standard procedures widely accepted now are described.
Regarding the domain treatment, the common practice consists of dividing the physical region into subregions
and generating a structured grid called a subgrid. If the subgrids share common interfaces, the grid or mesh is
called a block-structured grid. Smoothness at the block interfaces is obtained by imposing continuity of each
of the curvilinear coordinate functions and of their corresponding partial derivatives at the interfaces. Thus,
the location of the interface nodes is determined by the grid generation method [18]. Although complex grids
are divided into simpler ones, the iterative generation process is still performed over all the subgrids together.
This procedure requires an additional data indexing procedure to link the blocks across the interfaces through-
out the generation process.

An alternative procedure for two-dimensional multiply connected regions with non-smooth boundaries is
proposed in this work. It involves a novel domain treatment and new control function definitions. The physical
domain is transformed into a single rectangular block by means of a branch cut conveniently located inside the
physical region. This branch cut, indicated by C1 and C2 in Fig. 1, plays a key role and will be denoted by the
cursive letter C. Dirichlet boundary conditions are determined from an initial distribution of mesh points
not only on the physical boundaries, but also on the branch cut C, as described in Section 3 (see Fig. 1). Also,
Fig. 1. Grid curves control based on distribution of grid points over a branch cut.
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control functions solely dependent on the initial distribution of grid points on C and on the physical boundaries
are defined (see Section 2). During the generation process an intermediate mesh essentially maintaining grid line
distance according to the initial distance among boundary and branch cut nodes is obtained. The resulting mesh
is continuous but does not necessarily have slope continuity at C. An iterative smoothing process (described in
Section 4) is implemented that consists of relocating the branch cut C and numerically solving the elliptic system
until convergence is reached. As a result, globally smooth grids inside D, retaining the point spacing of the ini-
tial grid on C and on the physical boundaries, are generated. Moreover, it is possible to specify the number of n-
curves (n = constant) or g-curves (g = constant) that will be generated with a prescribed spacing. We call this
new algorithm ‘‘Branch Cut Grid Line Control’’, or BCGC algorithm.

In this work, only O–type grids will be analyzed although the procedure can be easily extended to other grid
types. An important feature of this procedure is the ability to generate smooth grids in the presence of bound-
aries with sharp corners or cusps. At these singular boundary points, our effort is directed toward the gener-
ation of conformal rather than orthogonal grids. As pointed out in [8], for highly obtuse or highly acute
corners, it is often necessary to relax orthogonality at boundary points extending some distance from the
corner.

In Section 5, smooth grids are generated for several domains with non-smooth boundaries. For some of
these domains, the standard treatment of the branch cut C as an interface leads to diverging results (see Sec-
tion 8.1). In Section 7, the BCGC grids are used to numerically approximate the vertical displacements of a
complexly shaped annular membrane including boundary singularities. A stable periodic oscillation with a
time period of approximately 17.25 units of time is attained. In contrast, numerical solutions based on grids
generated from the meshing module of ANSYS, a well-known computer-aided engineering (CAE) software,
become unstable after 22,000 time steps.
2. Definition of the grid control functions

The grid control functions /(n,g) and w(n,g) were systematically derived in [17] by imposing some geomet-
rical constraints on the grid lines. Then, by numerically solving Eqs. (1) and (2), line control in the interior
from the grid point distribution on the boundaries was achieved. However, this was successfully accomplished
only for simply connected regions. In the present work, we extend the technique introduced in [17] to multiply
connected domains. In the following sections, we will illustrate the method for a domain with a single hole in
its interior. Extending the technique to domains with multiple holes is more laborious but straightforward.

In our approach, Dirichlet boundary conditions are specified on the two vertical segments g = 1 and g = N1

corresponding to the branch cut C (see Fig. 1). As usual, they are also defined on the horizontal straight seg-
ments n = 1 (inner physical boundary) and n = N2 (outer physical boundary) of the computational domain.
We will show later that any initial spacing of grid points on the branch cut will be preserved in the interior
by conveniently defining the control functions / and w. The definition follows the one described in [17],
but it is adapted to our multiply connected domains. By combining Eqs. (1) and (2) in two different ways,
it is possible to eliminate w(n,g) and /(n,g), on the right hand side, and obtain
a½ygðxnn þ /xnÞ � xgðynn þ /ynÞ� ¼ y2
g 2b

xg

yg

 !
n

� c
xg

yg

 !
g
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4
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5; ð3Þ

c½ynðxgg þ wxgÞ � xnðygg þ wygÞ� ¼ y2
n 2b
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ð4Þ
From Eq. (3), it is observed that if the right hand side vanishes on the vertical segments g = 1 and g = N1, then

/ðn; gÞ ¼ xgynn�ygxnn

ygxn�xgyn
; when g ¼ 1 and g ¼ N 1:Now, an easy way for the right hand side of (3) to vanish is to impose

the conditions b = 0 and xg

yg

� �
g
¼ 0, on the branch cut C. This last condition requires that the transverse coordi-

nate curves (n-curves), be locally straight to C. Also, b = 0 implies that xg

yg
¼ � yn

xn
; when g ¼ 1 and g ¼ N 1. Sub-

stitution of this expression into the above formula for / leads to the elimination of all the partial derivatives in the
variable g. In fact,
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/ðn; gÞ ¼
�ðxnxnn þ ynynnÞ

x2
n þ y2

n

; when g ¼ 1 and g ¼ N 1: ð5Þ
A procedure completely analogous is applied to Eq. (4) along the horizontal segments n = 1 and n = N2. Then
after the elimination of all the partial derivatives in the variable n, we are led to
wðn; gÞ ¼
�ðxgxgg þ ygyggÞ

x2
g þ y2

g

; when n ¼ 1 and n ¼ N 2: ð6Þ
The partial definition of the control functions (5) and (6) involves derivatives with respect to one variable only.
In particular, the control function / only contains derivatives with respect to n, which is the free variable along
the branch cut C. Similarly, w only contains derivatives with respect to g, which is the free variable along the
straight segments n = 1 and n = N2 corresponding to the physical boundaries. Therefore, the derivative terms
present in the above definitions can be easily approximated from the initial distribution of grid points. As a
consequence, numerical values of the control functions on the rectangular computational domain boundaries
can be completely determined from the initial distribution of grid points on the physical boundaries and on the
branch cut C. In the next paragraphs, details about the previous statements are given.

To begin, we will discuss the initial distribution of points along C and the physical boundaries. For sim-
plicity, the branch cut C will be located along the x-axis of the physical domain as shown in Fig. 1. As a con-
sequence, y(n, 1) = y(n,N1) = 0 for all n. Therefore, partial derivatives with respect to n of the y coordinate are
all zero along the branch cut. In particular, ynn(n, 1) = 0 on C. If additionally, a uniform partition of nodes is
specified as a boundary condition on C, then x(n, 1) is a linear function of n. As a result, xnn(n, 1) = 0. Sub-
stitution into (5) leads to / = 0 on C. Therefore, control of grid lines cannot be established through the func-
tion / unless the initial distribution of grid points on the branch cut is not uniform.

Our definition for the non-uniform initial distribution of nodes on C consists of uniformly spaced clusters
of left end and right end points, and a non-uniformly spaced set of nodes in between. To start the definition, a
step size Dh = l/(N2 � 1) is computed. The symbol l represents the length of the branch cut. A certain number
of points nr are selected in the vicinity of the outer circle separated by a uniform distance Dhr = frDh. Similarly,
a set of nl points is selected in the vicinity of the inner boundary with a uniform spacing Dhl = flDh. The
parameters fl and fr define the contraction (0 < fl, fr < 1) or stretching (fl, fr > 1) experienced by consecutive
points on the branch cut which were initially separated a distance Dh. The expression fl · (nl/fr) · nr will be
used to describe the control imposed on the grid over the branch cut C. Similarly, the notation N1 · N2 will
be used to identify the grid size.

The spacing between intermediate points on C is determined by an osculating polynomial of degree five that
interpolates two nodes. One of them is the closest in the left cluster to the intermediate set. The other one is the
closest in the right cluster to the intermediate points. Continuity of the first and second derivatives is enforced
at these interpolating nodes to determine the interpolating polynomial. Two examples of this initial distribu-
tion on C are depicted at the left in Figs. 7 and 8. The reasons for this choice are the following: (1) The node
distribution is governed by a C2 curve. Therefore, the control functions (5),(6) are continuous at any node of
the rectangular boundaries where the boundary curve is sufficiently smooth. (2) It is possible to precisely deter-
mine the number of grid lines forming clusters near the inner and near the outer boundary. (3) There is a
smooth cell size transition between the cluster cells and the ones immediately adjacent located in the interme-
diate region (see Figs. 4 and 5). A completely analogous procedure can be implemented on the outer and inner
boundaries to obtain an initial distribution of nodes with a desired spacing.

Before proceeding with the construction of the grid generation algorithm, numerical values of the grid con-
trol functions / and w at all nodes of D0 are needed. To begin, a uniformly spaced rectangular grid with step
sizes Dn = 1 and Dg = 1 is defined on the computational domain D0. The discrete values for n and g are rep-
resented by ni = (i � 1)Dn and gj = (j � 1)Dg, for i = 1, . . . ,N2 and j = 1, . . . ,N1, respectively. Also, the discrete
values of x(ni,gj) = x(i, j) and y(ni,gj) = y(i, j) are denoted by xi,j and yi,j, respectively.

Similar notations for the discrete values of a, b, c, /, and w will be employed. As previously stated, values of
/ on C can be easily approximated from a non-uniform initial distribution of points
fðxi;1; yi;1Þ ¼ ðxi;N1

; yi;N1
Þ; i ¼ 1; . . . ; N 2g on C. In fact, by using centered differences in the variable n the follow-

ing approximations are obtained:
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/i;1 ¼ �
1

ci;1

�
ðxiþ1;1 � xi�1;1Þðxiþ1;1 � 2xi;1 þ xi�1;1Þ

2
þ
ðyiþ1;1 � yi�1;1Þðyiþ1;1 � 2yi;1 þ yi�1;1Þ

2

�
;

/i;N1
¼ /i;1 i ¼ 2; . . . ; N 2 � 1: ð7Þ
If i = N2 then, second order backward finite-difference approximations of the derivative terms present in / at
(N2,1) are employed. Analogously, values of w at the physical boundaries can be easily approximated from an
initial distribution of points using centered differences in the variable g. Finally, the values of /(n,g) and
w(n,g) at the interior points of the computational domain D0 are obtained by linear interpolation along the
n-curves and the g-curves, respectively. It will be shown in the following sections that the control function
/ carries the spacing of the initial distribution of grid points on C to the corresponding n-curves inside the
physical domain D. These two distances may differ to some degree depending on the bounding curve shapes.
Similarly, it can be shown that the control function w is responsible for carrying the spacing of the initial dis-
tribution of grid points on the physical boundaries to the corresponding g-curves.

3. Boundary value problem and its numerical solution

Following the procedure described in the previous sections, it was possible to define the grid control func-
tions / and w over the entire rectangular computational domain. As a next step, we proceed to numerically
solve the boundary value problem consisting of Eqs. (1) and (2), with Dirichlet boundary conditions along the
sides of the rectangular computational region (see Fig. 1). This boundary value problem is solved by approx-
imating the partial derivative terms, included in (1) and (2), using centered differences and then by applying
point SOR iteration to the discrete system of equations that results. More precisely, the discrete equation
to be solved iteratively for the curvilinear coordinate x is given by
xi;j ¼
1

2ðaþ cÞi;j
ai;j 1þ

/i;j

2

� �
xiþ1;j þ 1�

/i;j

2

� �
xi�1;j

� �
þ ci;j 1þ

wi;j

2

� �
xi;jþ1 þ 1�

wi;j

2

� �
xi;j�1

� ��

�
bi;j

2
ðxiþ1;jþ1 � xiþ1;j�1 � xi�1;jþ1 þ xi�1;j�1Þ

�
; ð8Þ
where
ai;j ¼ ðxgÞi;j
� �2

þ ðygÞi;j
� �2

bi;j ¼ ðxnÞi;jðxgÞi;j þ ðynÞi;jðygÞi;j

ci;j ¼ ðxnÞi;j
� �2

þ ðynÞi;j
� �2

ðxgÞi;j ¼ ðxi;jþ1 � xi;j�1Þ=2;

ðygÞi;j ¼ ðyi;jþ1 � yi;j�1Þ=2; ðxnÞi;j ¼ ðxiþ1;j � xi�1;jÞ=2;

ðynÞi;j ¼ ðyiþ1;j � yi�1;jÞ=2 i ¼ 2; . . . ; N 2 � 1; j ¼ 2; . . . ; N 1 � 1:
An analogous equation is obtained for the discrete values yi,j. The convergence of the iteration is accelerated
by updating the most recent value of x and y at the k-iteration with the relaxation parameter x as follows:
xk

i;j ¼ xxk
i;j þ ð1� xÞxk�1

i;j and yk
i;j ¼ xyk

i;j þ ð1� xÞyk�1
i;j . The iterative process requires the definition of an initial

mesh (k = 1) with a grid point spacing over C, the inner, and the outer boundary in accordance with the de-
sired spacing between neighboring grid lines in the final grid, as shown in Fig. 2(a). This initial grid consists of
circular rings around the inner boundary and straight segments (rays). Each ring passes through a branch cut
node and its radius is the distance from this node to the origin. The straight segments (rays) interpolate nodes
between the inner and the outer boundary.

The SOR iteration stops when the maximum distance, in terms of the sup-norm, between the points of two
consecutive grids is within some specified tolerance. It means max16i6N2;16j6N1

ðjxk
i;j � xk�1

i;j j; jyk
i;j � yk�1

i;j jÞ < Tol:
For illustration, a coarse grid, obtained following the numerical procedure just described, is shown in
Fig. 2(b). The domain corresponds to the three-leafed rose region with inner boundary described by the para-
metric equations, x(h) = 0.3(2 + cos (3h))cos (h), y(h) = 0.3(2 + cos (3h))sin (h), 0 6 h 6 2p. The outer radius is
router = 2. The grid shown in Fig. 2(a), which has size 61 · 31 and has clusters of five n-curves at each end with
spacing factors fl = 0.6 and fr = 0.5 (0.6 · 5/0.5 · 5), was used as an initial grid. The iteration process
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Fig. 2. (a) Initial grid G0 (61 · 31 � 0.6 · 5/0.5 · 5). (b) First BCGC grid G1.
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converged after 63 iterations for a relaxation parameter x = 1.85 and a tolerance Tol = 10�5. It is evident how
the n-curves passing through initially clustered C nodes stay close throughout the entire domain. However, the
resulting grid though continuous is non-smooth over the branch cut as shown in Fig. 2(b). This non-smooth-
ness problem is solved by defining an iterative smoothing procedure described in the next section. As stated in
the introduction, this algorithm will be called ‘‘Branch Cut Grid Line Control’’, or BCGC algorithm. The cor-
responding grid generator subroutine will be called gengridBCGC.

4. BCGC algorithm and the smoothing process

In this section, we summarize the steps required to generate a smooth BCGC grid with a prescribed spacing
of n-curves near the inner boundary curve, or near the outer boundary; or with a prescribed spacing of g-
curves at a specified location inside the physical domain.

Step 1 (first branch cut).
(a) Select an initial branch cut C1. Choose g = 1, the grid line corresponding to C1.
(b) Specify an initial distribution of points over C1 as part of a Dirichlet boundary condition (follow the

procedure described in Section 2). Also, specify an initial distribution of points on the physical
boundaries.

(c) Define the control functions / and w as indicated in Section 2.
(d) Define an initial mesh G0 for the domain D according to Section 2 (see Fig. 2(a)).
(e) Apply the SOR iterative numerical method described in Section 3 (subroutine gengridBCGC) to obtain

an intermediate mesh G1 (see Fig. 2(b)). Note the non-smoothness of this grid at the branch cut.

Step 2 (second branch cut).
(a) Select a different g-curve as a new branch cut, C2. For simplicity, C2 is chosen 180� from the previous

branch cut g ¼ int N1þ1
2

� 	� 	
.

(b) The coordinates of the points on grid G1 that are located over C2 define a Dirichlet boundary condition
on C2 for a new BVP. This new problem is identical to the one solved in step 1 save the boundary values
are over the new branch cut C2.
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(c) A new grid G2 is obtained by applying gengridBCGC to the new BVP described in (b) that uses G1 as an
initial grid. Note that the previously broken grid at C1 is now smooth as seen in Fig. 3(b).

Step 3 (Stop criteria and final smooth grid).
(a) Select a new branch cut C3, e.g. C3 ¼ C1.
(b) The coordinates of the points on grid G2 that are located over the new branch cut C3 partially define a

Dirichlet boundary condition for a new BVP.
(c) Using G2 as the initial grid, the subroutine gengridBCGC is applied to the new BVP and a new grid G3 is

generated. If the number of iterations performed by gengridBCGC to generate G3 is three or less, the
process stop and G3 is selected as the final grid.

(d) Otherwise, the smoothing continues as many times (i = 4, 5, . . . ,M ) as needed. During the process, new
branch cut relocations Ci are implemented and new intermediate grids Gi are obtained until gen-

gridBCGC requires three iteration or less to generate the final grid GM.

During the branch cut interchange process the control functions / and w remain unchanged. This is nec-
essary to preserve the spacing information from the initial distribution through the generation process. The
smoothing iterative process just described can be considered as an adjustment of the initial distribution of
nodes over the original branch cut C. The adjustment consists of relocating the branch cut nodes in order
to achieve smoothness of the final grid on C without sensibly affecting the spacing of the grid lines.

It is well-known that the Winslow grid generator, which is defined by (1) and (2) with zero right hand sides,
gives smooth grids. A rigorous result, Rado’s theorem [12], establishes that the Winslow transformation is a
diffeomorphism (one-to-one, onto and of class C1) if the transformation from the computational to the phys-
ical domain boundary is one-to-one, onto and continuous in both directions. Even if the physical boundary
has slope discontinuities, the interior grid is generally smooth if the regularity condition on the boundary
transformation is verified. An example is provided in [9] for a domain identical to the ‘‘Chevron’’ symbol.
We are not aware of a similar rigorous result for the nonhomogeneous quasi-linear elliptic system (1),(2).
However, it is reasonable to expect smoothness of the solution in the interior of D if the control functions
are continuous or more regular. This fact motivates our definition of x(n,g) as a C2 function on C, since it
implies that /(n,g) is continuous on C. Also, w(n,g) is continuous everywhere on the physical boundaries if
the initial distribution of points is sufficiently smooth, with the only exception of the boundary points where



Table 1
Grid convergence of BCGC algorithm applied to the three-leafed rose (61 · 31 � 0.6 · 5/0.5 · 5)

Grids compared Maximum distance Average distance Iterations

G0–G1 5.8e�01 1.8e�01 63
G1–G2 1.5e�01 6.8e�03 56
G2–G3 9.5e�06 9.7e�07 1

Table 2
BCGC algorithm applied to the three-leafed rose domain with grid parameters: 2 · 7/0.3 · 3

Grid size 101 · 101 151 · 151 201 · 201 251 · 251 301 · 301

G0–G1 521 1082 1789 2620 3561
G1–G2 441 902 1470 2129 2864
G2–G3 167 285 398 498 587
G3–G4 17 32 53 78 107
G17–G18 – – – – 3

Total Iters 1166 2345 3794 5440 7295
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there is slope discontinuity. By extending the definition of the control functions to the interior of D using
linear interpolation, we were able to obtain smoothness of the grid lines in the interior even for singular
boundaries as the astroid and epicycloid (see Section 5).

The grids obtained by applying the BCGC algorithm to the rose’s domain defined in Section 3 are illus-
trated in Figs. 2 and 3. In Table 1, the convergence process is described. ‘‘Maximum distance’’ refers to the
maximum Euclidean distance between corresponding nodes of the two grids being compared. ‘‘Avg. dist’’
refers to the average of all the Euclidean distances between corresponding nodes. The final mesh G3 shown
in Fig. 3(b) is smooth (everywhere in the interior) and its grid lines are spaced according to the initial node
distribution.

The smoothing process can be validated by repeating the previous experiment, for a 61 · 31 BCGC grid
with control parameters 1 · 1/1 · 1, for the three-leafed rose. As expected, the first intermediate grid obtained
G1 is broken at the branch cut nodes. The final grid G3 which is obtained in three BCGC steps after 119 iter-
ations is identical to the smooth grid that would be generated by applying Winslow’s algorithm directly.

The performance of the BCGC algorithm on practical computational grids is reported on Table 2 for var-
ious mesh sizes. The maximum distance from the origin to the rose boundary is now two. The outer boundary
is located at router = 10, the mesh parameters are 2 · 7/0.3 · 3, and the other parameters are defined as in the
previous experiment. All the computational experiments were performed on a dual processors 2.7 GHz
PPC970.

5. Application of BCGC algorithm to multiply connected domains including boundary singularities

Four additional multiply connected domains with a hole in their interiors are analyzed in this section. For
comparison, the minimum distance from the inner and the outer boundary points equals three in all cases. The
grids consist of 61 g-curves and 31 n-curves and the branch cut spacing is defined as 0.6 · 5/0.5 · 5. Along the
hole bounding curve and the outer boundary curve, the location of the grid points (Dirichlet boundary con-
dition) is determined using a uniform angular step. The rest of the parameter values are identical to the pre-
vious three-leafed rose’s experiment. First, a BCGC grid is obtained for an astroid shaped obstacle whose
parametric equations are given by x(h) = 0.5(3cos (h) + cos (3h)) and y(h) = 0.5(3sin (h) � sin (3h)), for 0 6
h 6 2p. The initial and the final grid after four steps are shown in Fig. 4. The following experiment corre-
sponds to a domain with an epicycloid inner boundary shape and router = 6, as shown in Fig. 5. Two more
experiments are performed for an elliptical and pacman inner curves, respectively. The convergence process
of the BCGC algorithm for these domains is summarized in Table 3. It is observed that for regions with sharp
corners or cusps (astroid and epicycloid), the number of iterations is slightly higher at first. However, the total
number of iterations is similar in all cases with the exception of the astroid where the number of iterations is
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Fig. 4. (a) Astroid initial grid, G1. (b) Astroid fourth BCGC grid, G4.
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Fig. 5. (a) Epicycloid initial grid, G1. (b) Epicycloid third BCGC grid, G3.

Table 3
BCGC algorithm applied to arbitrary shaped domains (61 · 31 � 0.6 · 5/0.5 · 5)

Step Astroid Ellipse Pacman Epicycloid Rose

G0–G1 112 76 66 97 73
G1–G2 100 65 59 62 64
G2–G3 14 16 1 1 10
G3–G4 1 1 – – 1
G4–G5 – – – – –

Total Iters 227 158 126 160 148
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Table 4
Jacobian and deviation from orthogonality

Shape ADO Jmin Iters Jmax

101 · 101 301 · 301 101 301 101 301 101 301

Astroid 6.1� 6� 1.2e�6 7.5e�9 1240 7968 5.6e�2 6e�3
Pacman 1.4� 2� 4.7e�3 1.7e�4 1076 6674 5.9e�2 7.7e�3
Epicycloid 9� 8.8� 2e�3 6.2e�5 965 6226 5.3e�2 5.6e�3
Rose 5.2� 5� 4.7e�3 5e�4 1166 7295 5e�2 5.4e�3

Control parameters: 2 · 7/0.3 · 3, router = 10.
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about 55% greater than the average of the others. As seen in Table 4, BCGC algorithm was able to generate
much finer and practical non-self-overlapping grids with a prescribed spacing for all the domains under
consideration.

6. Grid quality analysis

There are several properties that serve to measure the quality of a grid. For example, smoothness, orthog-
onality, non-self-overlapping, and bounded aspect ratios. These properties can be determined by the Jacobian
matrix J of the transformation T [10]. A highly desired one is that the grid be non-self-overlapping. This is
equivalent to requiring that the parametric functions x(n,g) and y(n,g) defining the transformation T be one-
to-one, which is also equivalent to the condition that the Jacobian J = xnyg � xgyn of the transformation T

does not change in sign on the entire parametric domain [5]. For algebraic grid generation methods, such
as transfinite interpolation (TFI) or boundary-conforming mapping (BCM), a well-known deficiency is that
for very convoluted bounding curves self-overlapping often occurs [23]. This is when some quadrilateral cells
overlap each other.

To test self-overlapping behavior of the BCGC algorithm, we performed several experiments for a 61 · 41
grid of the astroid domain, defined in the previous section, with control parameters: 0.8 · 5/0.3 · 5. A self-
overlapping grid can be detected by a change in sign of the Jacobian. A set of experiments depending on
the ratio, ratio = router/max(rinner), was considered. The smallest ratio employed was 2/1000. The maximum
inner radius, max(rinner), was kept fixed at 2. As the radius of the outer boundary, router, increases the number
of BCGC iterations and cell sizes also increase. However, the resulting grid is self-overlapping free. As
expected, the quality of the BCGC meshes degrades as ratio approaches 1. For instance, if router 6 4 the
BCGC grids overlap at the cusps. This overlapping problem can be fixed by increasing fl, the spacing among
the branch cut nodes in the vicinity of the inner boundary. In fact for fl = 1, the 2/4 ratio grid is non-self-over-
lapping. Therefore, the BCGC algorithm does not guarantee non-self-overlapping grids in general. However
in many cases when a self-overlapping grid is generated, it is possible to make it non-self-overlapping, without
changing the grid size, by adjusting the spacing on the initial grid, as mentioned above.

In Table 4, we have included a fine 301 · 301 non-self-overlapping grid for the astroid domain. Thus even
for boundary shapes with strong singularities, it is possible to generate reasonable fine non-self-overlapping
grids by applying the BCGC algorithm with appropriate control parameters.

Another important property of a grid is the orthogonality between the crossing grid lines. In this work, we
adopt some parameters introduced in [6]. For instance, the maximum and mean deviation from orthogonality
ADO and MDO, respectively, are defined as
ADO ¼ 1

ðN 1 � 1ÞðN 2 � 2Þ
XN2�1

i¼2

XN1�1

j¼1

90� � hi;j



 

� 	
hi;j ¼ arccos

bi;j

ðai;jci;jÞ
1=2

 !
:

MDO ¼ max 90� � hi;j



 

; 2 6 i 6 N 2 � 1; 1 6 j 6 N 1 � 1
The angle hi,j is a discrete approximation for the local distortion angle between grid lines at the point (xi,j, yi,j).
Unfortunately for many interesting domains such as those discussed in this work, the orthogonality con-
straints lead to collapse of grid lines. It is well-known that simultaneously conditioning more than one prop-
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erty of the grid potentially results in clashing demands [10]. For example in [1], it is shown that reducing the
aspect ratio values may result in an increment of the mean deviation from orthogonality.

As mentioned in the introduction, our main effort is in controlling the grid line spacing. The results
obtained by applying BCGC algorithm to 101 · 101 and 301 · 301 grids, with control parameters 2 · 7/
0.3 · 3, are reported in Table 4. The columns Jmin and Jmax contain the minimum and maximum absolute val-
ues of the Jacobian, respectively. These values are closely related to the area of the cells. The Iters column
reports the total number of iterations required by the BCGC method to reach convergence. Curves describing
the epicycloid and astroid experience abrupt changes of 360� at the cusps points. Neighboring grid lines also
experience abrupt changes as they go near these singular points. As a consequence, the maximum deviation
from orthogonality is relatively high. However, the BCGC grids obtained are not too far from orthogonality
in the majority of the nodes, as revealed by the values of the parameter average deviation from orthogonality
(ADO) (in degrees) in Table 4.

7. Vibration of complexly shaped annular membranes using BCGC grids

In this section, application of the BCGC grids to the numerical modelling of arbitrarily shaped vibrating
annular membranes is considered. Analytical solutions can only be obtained for geometrically simple shapes.
Therefore, numerical methods should be employed in general. Complexly shaped domains lead to the use of
boundary conforming curvilinear coordinates x(n,g) y(n,g), as described in Section 1. The IBVP, written in
terms of BCGC curvilinear coordinates, is given by
W tt ¼
c2

J 2
aW nn � 2bW ng þ cW gg þ awW n þ c/W g

� 	
; ðn; gÞ 2 D0; t > 0; ð9Þ

W ðn; 1; tÞ ¼ 0; W ðn; n2; tÞ ¼ 0; ð10Þ
W ðn; g; 0Þ ¼ f ðn; gÞ; W tðn; g; 0Þ ¼ gðn; gÞ; ðn; gÞ 2 D0; ð11Þ
where D0 is the rectangular domain in coordinates n and g. We choose a complex domain including cusps in its
boundary to show the advantages of using BCGC grids. More precisely, the shape of the annular membrane
has the astroid curve defined in Section 5 as its inner boundary, and, a circular outer boundary of radius
router = 10. The membrane is fixed at the boundary points. There is an initial deformation given by
f ðnðx; yÞ; gðx; yÞÞ ¼ 0; if r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 5;

sin ðp
5
ð10� rÞÞ; if 5 < r 6 10:

(
ð12Þ
The initial velocity is assumed to be zero, and the wave speed is taken as c = 1. The above IBVP Eqs. (9)–(12)
is numerically solved using an explicit, marching in time, finite-difference method (centered finite-differences)
based on the Winslow and the BCGC grids described in this work. The temporal step size Dt is chosen such
that numerical stability is guaranteed.

For illustration, we choose an 81 · 41 coarse grid, with control parameters 2 · 7/0.3 · 3 and a time step
Dt = 0.001, to present our results. They are shown in Fig. 6. As expected, the vertical displacement of the
membrane corresponds to a time periodic oscillation. After the transient solution dies out, a time period of
approximately 17.25 units of time is attained. We ran experiments for grid sizes up to 301 · 301. Appropriate
cell sizes are required to satisfy the CFL stability condition for the explicit finite-difference method. We found
that for 141 · 141 Winslow grids and Dt = 0.001 the numerical solution blows out because the CFL condition
is violated. In contrast, BCGC grids, with control parameters 2 · 7/0.3 · 3, produces satisfactory results for
Dt = 0.001 combined with mesh sizes up to 241 · 241.

8. Concluding remarks

We have developed an efficient numerical method (BCGC algorithm) to control the spacing of grid lines for
two-dimensional multiply connected regions including severe boundary singularities. Smooth boundary-con-
forming coordinates have been obtained by combining a smoothing process with the numerical solution of
quasi-linear elliptic systems of partial differential equations. An important feature of the BCGC algorithm



Fig. 6. Vibrating annular membrane with an astroid curve defining the inner boundary.

582 V. Villamizar et al. / Journal of Computational Physics 223 (2007) 571–588



V. Villamizar et al. / Journal of Computational Physics 223 (2007) 571–588 583
is its ability to produce non-self-overlapping and smooth grids (interior region) for domains exhibiting sharp
corners or cusps. Results for domains bounded by non-smooth curves, such as epicycloid and astroid, are
illustrated in Figs. 3–5.

Currently, we are working on the construction of BCGC grids for 3D complexly shaped domains. The
results of these studies will be reported in a separate paper. Certainly, BCGC technique would have a greater
impact in 3D applications than in 2D applications. However, the results presented here for 2D complex con-
figurations will benefit the practitioners of grid generation since they constitute an important contribution to
the present 2D technology regarding grid control. On the other hand, most of the techniques and applications
of 3D grid generation have been, and continue to be, devised initially for two-dimensional configurations. This
statement is supported by a considerable number of recent publications in 2D grid generation techniques [1–
3,8,23], and also by recent publications in applied areas that use 2D grids [3,7,13,14,20,22].

8.1. Comparison with standard techniques

The BCGC algorithm includes several new aspects not considered in previously developed elliptic grid gen-
eration algorithms. First, the grid nodes on the selected branch cut are fixed (Dirichlet boundary condition)
during the application of the SOR iteration to the discrete system defined in Section 3. This means that the
selected branch cut C is treated as a physical boundary in contrast with standard procedures [18,19] where
C is considered as an interface on which complete continuity is usually verified. This procedure is responsible
for the convergence of the iterative numerical method in the presence of severe boundary singularities, as
explained below. As a result, a non-smooth grid at the originally selected C is obtained (recall the rose exper-
iment described in Section 3).

Second, a practical grid line control mechanism, for O-type grids, is defined from an initial node distribu-
tion on C (see Section 2) combined with appropriate definition of control functions / and w. Third, a novel
grid smoothing procedure is introduced (see Section 4). It consists of relocating the original branch cut and
then reapplying the iterative numerical method until convergence is achieved. The relocation procedure is
repeated as many times as needed, until smooth grids in the interior of D are obtained.

Finally, the definition of the control function / on the branch cut only includes derivatives of the physical
coordinates x(n,g) and y(n,g) with respect to the free variable n along C (see Eq. (5)). The main advantage of it
is that values of the control functions are obtained directly from the initial distribution of grid nodes on C and
on the physical boundaries. Thus, a natural link between the initial clustering properties and the control func-
tions is established. The influence of the initial distribution of nodes on C onto the grid line distribution of the
final BCGC grid is evident from Figs. 7 and 8, for the epicycloid domain.

In [18], control functions are defined following three different approaches: from a global smoothed initial
algebraic grid, from an initial boundary point distribution, and by imposing orthogonality at boundaries with
specified normal spacing. The difficulty associated with the last approach is that the definition of the control
functions along the physical boundaries and C includes derivatives of the coordinates with respect to both
independent variables n and g. Therefore, only one of these derivatives can be approximated from the initial
boundary or branch cut point distributions, then additional conditions need to be imposed.

The second approach based on the initial distributions of nodes along the branch cut and the physical
boundaries is also different than our approach. Our definition includes derivatives of the two coordinates
x(n,g) and y(n,g) with respect to the free variable instead of derivatives of only one of the two physical coor-
dinates as proposed in [18]. Another approach, described in detail in chapter 4 of Ref. [19], requires the intro-
duction of a parameter space P and a definition of a ‘‘grid control map’’ from the computational domain D0 to
P. The definition of the grid control map is not simple, especially when generating smooth grids in the entire
domain. In some cases, it is required to solve Laplace’s equation for the parameters involved in the grid con-
trol map.

The non-smoothness of the grids at the originally selected branch cut could be avoided by modifying the
branch cut treatment in the BCGC algorithm. In fact by assuming complete continuity on the original C, it
is possible to obtain smooth grids for domains such as the three-leafed rose of Section 3 without relocating
C. Unfortunately, this procedure does not always work for domains with severe singularities such as the
astroid and the epicycloid of Section 5, as shown in Table 5.



Fig. 7. Initial distribution along C and final BCGC grid (61 · 31 � 2 · 5/0.3 · 5).

Fig. 8. Initial distribution along C and final BCGC grid (61 · 31 � 0.6 · 5/0.3 · 5).
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One of the major accomplishments of the BCGC algorithm is its ability to obtain smooth grids (in the inte-
rior) for those singular domains where the standard treatment of a branch cut, as an interface, fails. In fact,
fixing the node locations on the selected branch cut is a key step in the convergence of the SOR iterative
numerical method.

In Table 5, several experiments performed for the astroid and epicycloid domains are reported. The grids
analyzed are 61 · 41 with control parameters on C given by fl · 5/0.3 · 5 and router = 6. The left control factor



Table 5
Convergence comparison: BCGC against BCGC Standard algorithm (61 · 41 � fl · 5/0.3 · 5)

Inner boundary 0.6 · 5 0.8 · 5 1 · 5 1.2 · 5 1.4 · 5 1.6 · 5

S B S B S B S B S B S B

Epicycloid-Iters D 174 D 174 D 187 D 187 D 175 D 170
Astroid-Iters D 227 D 210 D 190 D 194 D 186 D 187
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fl is adjusted for each experiment. A range of values for fl, for which the BCGC algorithm converges and the
BCGC Standard diverges, is identified. The symbol S stands for the BCGC Standard algorithm. The symbol B
stands for the BCGC algorithm. The letter D indicates that the corresponding algorithm is diverging. Thus, it
is found that BCGC always converges, while BCGC Standard always diverges, when fl 2 (0.6,1.6), for the
experiments described above. We performed similar experiments for fixed control parameters 0.8 · 5/0.3 · 5
and variable grid sizes. The domain characteristic and other parameters are identical to the epicycloid’s exper-
iment in Section 5. It was noticed that the standard approach failed to converge with relatively coarse grids
(61 · 61), while BCGC algorithm converged even for much finer grids (201 · 201) subject to the same cluster-
ing conditions.

8.2. Comparison of BCGC and structured grids generated by the CAE software ANSYS

Structured grids for the astroid annular region, bounded by the astroid curve inside and the circle outside,
were generated using the meshing module of the well-known commercial CAE software ANSYS. This module
generates grids by using free meshing or mapped meshing options. Free meshing creates unstructured grids in
general. ANSYS mapped meshes have regular patterns. Their cells can be quadrilateral distributed by rows.
These are the type of structured grids that can be used to approximate the values of a field variable using a
finite-difference method in curvilinear coordinates. Mapped meshes are usually constructed dividing the phys-
ical region into subregions and then executing the code to generate a subgrid in each subregion. For multiple
connected regions as those studied in this work, mapped meshes break at the interfaces between subregions, as
shown in the top left graph of Fig. 9. As a consequence, ANSYS mapped meshes are not smooth in the
interior.

Control of grid lines in mapped meshes depends on the initial distribution of nodes along the subregion
boundaries. However, there is not a practical procedure to control the grid line spacing in the interior. We
conducted a grid quality comparison between BCGC and ANSYS meshes of various sizes. The domain chosen
was the astroid which includes severe singularities in the form of cusps. Our quality analysis revealed that the,
defined in reference [6], of ANSYS mapped mesh cells is about 70% more than BCGC grid cells with control
parameters 1.5 · 7/0.8 · 3. These results are shown in Table 6. Therefore, BCGC grids for complex domain
configurations are smoother and also more orthogonal than ANSYS mapped meshes of the same size.

Finally, we repeated the experiment of Section 7 using an ANSYS mapped mesh of size 81 · 41. The numer-
ical solution showed instabilities after 22,000 time steps. The deterioration of the numerical solution is
depicted at the left of Fig. 9. At the right of the same figure, a numerical solution of the membrane displace-
ment based on BCGC grids of the same size is shown. As opposed to mapped meshes, a stable periodic oscil-
lation was observed for numerical simulations consisting of more than 100,000 iterations on BCGC grids. This
experiment reveals the importance of the smoothness of the grid and the appropriate spacing between grid
lines in the vicinity of the singularities in numerical simulation. These are precisely the two factors considered
in this work for the construction of BCGC grids.

8.3. Impact of BCGC grids in numerical simulation

Smooth grids with higher density of coordinate curves near the physical boundaries are highly desirable in
the computation of fluid properties in the presence of boundary layers [14]. In contrast, for complex geome-
tries such as the astroid and the epicycloid, stretching the distance between neighboring grid lines may be
required to avoid self-overlapping near sharp corners or cusps. Also, adjusting the distance between neighbor-



Fig. 9. Vibrating annular membrane using and 81 · 41 ANSYS mapped grid (left) and a 81 · 41 BCGC grid with control parameters
2 · 7/0.3 · 3 (right).
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Table 6
Comparison of average deviation from orthogonality (ADO) between ANSYS mapped and BCGC grids with control parameters 1.5 · 7/
0.8 · 3

Grid type 101 · 101 161 · 161 201 · 201 301 · 301

Mapped 7.77� 7.98� 8.06� 8.15�
BCGC 4.67� 4.62� 4.61� 4.58�
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ing grid lines is especially important when implementing an explicit finite-difference marching in time scheme
for wave propagation problems [4,21,20]. As discussed in Section 7, the cell sizes of the grids used in the com-
putation should satisfy the CFL stability condition. By appropriately controlling the grid line spacing in the
case of complexly shaped annular membranes (see Section 7), we increased the size of the grids by approxi-
mately 70% (141 · 141 to 241 · 241) keeping the time step size fixed at Dt = 0.001, and still satisfying the
CFL stability condition. Therefore, the precision can be greatly improved without drastically increasing the
computational cost.

Explicit marching in time numerical schemes (Finite-Difference Time-Domain) are very common in the
numerical modelling of scattering phenomena [16,13]. Thus, the use of BCGC grids in wave scattering will
be of importance in this field. We will discuss the advantage of applying BCGC grids in wave scattering
numerical computation in a forthcoming paper.
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